Tech in T: depth + breadth‎ > ‎AI‎ > ‎Machine Learning‎ > ‎Neural Networks‎ > ‎Deep Learning‎ > ‎python‎ > ‎MNIST (Theano)‎ > ‎

13 References


  1. Bengio, P. Lamblin, D. Popovici and H. Larochelle, Greedy Layer-Wise Training of Deep Networks, in Advances in Neural Information Processing Systems 19 (NIPS‘06), pages 153-160, MIT Press 2007.
  1. Bengio, Learning deep architectures for AI, Foundations and Trends in Machine Learning 1(2) pages 1-127.
  1. Bengio, O. Delalleau, Justifying and Generalizing Contrastive Divergence (2009), Neural Computation, 21(6): 1601-1621.
[BoulangerLewandowski12]N Boulanger-Lewandowski, Y. Bengio and P. Vincent, Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription, in Proceedings of the 29th International Conference on Machine Learning (ICML), 2012.
[Fukushima]Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202.
[Hinton06]G.E. Hinton and R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 28 July 2006, Vol. 313. no. 5786, pp. 504 - 507.
[Hinton07]G.E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets”, Neural Computation, vol 18, 2006
[Hubel68]Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London), 195, 215–243.
[LeCun98]LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
  1. Lee, C. Ekanadham, and A.Y. Ng., Sparse deep belief net model for visual area V2, in Advances in Neural Information Processing Systems (NIPS) 20, 2008.
  1. Lee, R. Grosse, R. Ranganath, and A.Y. Ng, “Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations.”, ICML 2009
  1. Ranzato, A. Krizhevsky, G. Hinton, “Factored 3-Way Restricted Boltzmann Machines for Modeling Natural Images”. Proc. of the 13-th International Conference on Artificial Intelligence and Statistics (AISTATS 2010), Italy, 2010
[Ranzato07]M.A. Ranzato, C. Poultney, S. Chopra and Y. LeCun, in J. Platt et al., Efficient Learning of Sparse Representations with an Energy-Based Model, Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007.
[Serre07]Serre, T., Wolf, L., Bileschi, S., and Riesenhuber, M. (2007). Robust object recog- nition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell., 29(3), 411–426. Member-Poggio, Tomaso.
  1. Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML‘08), pages 1096 - 1103, ACM, 2008.
  1. Tieleman, Training restricted boltzmann machines using approximations to the likelihood gradient, ICML 2008.
  1. Bengio, X. Glorot, Understanding the difficulty of training deep feedforward neuralnetworks, AISTATS 2010