References
[BengioDelalleau09] | - Bengio, O. Delalleau, Justifying and Generalizing Contrastive Divergence (2009), Neural Computation, 21(6): 1601-1621.
|
[Fukushima] | Fukushima, K. (1980).
Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological
Cybernetics, 36, 193–202. |
[Hinton07] | G.E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets”, Neural Computation, vol 18, 2006 |
[Hubel68] | Hubel, D. and Wiesel, T. (1968).
Receptive fields and functional architecture of monkey striate cortex.
Journal of Physiology (London), 195, 215–243. |
[LeCun98] | LeCun, Y., Bottou, L., Bengio,
Y., and Haffner, P. (1998d). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324. |
[Lee09] | - Lee, R. Grosse, R. Ranganath, and A.Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical
representations.”, ICML 2009
|
[Ranzato10] | - Ranzato, A. Krizhevsky, G. Hinton, “Factored 3-Way Restricted
Boltzmann Machines for Modeling Natural Images”. Proc. of the 13-th
International Conference on Artificial Intelligence and Statistics
(AISTATS 2010), Italy, 2010
|
[Serre07] | Serre, T., Wolf, L., Bileschi,
S., and Riesenhuber, M. (2007). Robust object recog- nition with
cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell., 29(3),
411–426. Member-Poggio, Tomaso. |
[Tieleman08] | - Tieleman, Training restricted boltzmann machines using approximations to the likelihood gradient, ICML 2008.
|
[Xavier10] | - Bengio, X. Glorot, Understanding the difficulty of training deep feedforward neuralnetworks, AISTATS 2010
| |